
Assignment 4

csci2200, Algorithms

Instructions:

• Honor code: Work on this assignment alone, or with one partner. Between
different teams, Collaboration is at level 1 [verbal collaboration only]

• Check out the Homework guidelines on class website.

1. Select the
√
n-closest: Given an unordered sequence S of n elements (for simplicity, assume

items are integers or real numbers), describe an efficient method for finding the d
√
ne elements

whose values are closest to (the value of) the median of S. What is the running time of your
method? Aim for linear time.

What we expect: The rationale of the algorithm, pseudocode, analysis

2. Merging sorted lists: Assume you have k sorted arrays containing a total of n elements,
and you want to merge them together in a single (sorted) array containing all n elements. For
simplicity you may assume that the k arrays contain the same number of elements, namely
n/k elements each.

(a) Approach 1: merge array 1 with array 2, then merge the result with array 3, then merge
the result with array 4, and so on. What is the worst-case running time ?

What we expect: Detailed analysis of this approach

(b) Approach 2: split the set of k arrays into two sets of k/2 arrays, merge each one
recursively, then use the standard 2-way merge procedure (from mergesort) to combine
the two resulting arrays. What is the worst-case running time ?

What we expect: A recurrence , the recurrence depth, and the solution.

(c) Approach 3: Give another approach (to merge the k arrays) that uses a heap, and runs
in O(n lg k)-time.

What we expect: The idea of the algorithm, pseudo-code, analysis

1



Algorithms: csci2200 Laura Toma, Bowdoin College

Evaluation

This assignment (and all subsequent assignments) will be evaluated along four general criteria:

1. Algorithm: Is the algorithm clearly described ? Is the general idea included? Is high-level
pseudocode included?1

2. Correctness: Does the algorithm solve the problem?

3. Analysis: Is the running time of your algorithm analysed?

4. Style: Does it look professional and neat? Is the explanation written carefully in complete
sentences, and well-organized logic? Is it easily human-readable? Is it compleete yet concise?
Is it easy to understand? These kinds of questions do not affect correctness but greatly affect
how readable the algorithm is.

1Pseudocode should be clear enough that a student who took 1101 can understand what your algorithm is doing
and could implement it in a language of their choice, without thinking too hard. At the same time, pseudocode is
not actual code, and should not include details that are straightforward and make the ideas hard to follow. For
e.g.it is preffered to say “find the max element in the array” (basic straightforward process) rather then spell it out.

2


