
PRIM’s MST algorithm

• Start with spanning tree containing arbitrary an vertex r and no edges

• Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current
tree with a vertex not in the tree

• To find minimal edge connected to current tree we maintain a priority queue on vertices not
in the tree:

– The key/priority of a vertex v is the weight of minimal weight edge connecting v to the
tree. We maintain pointer from adjacency list of v to v in the priority queue.

– For each node v maintain visit(v) such that edge (v, visit(v)) is the best edge connecting
v to the current tree.

PRIM
/* initialize */
Pick arbitrary vertex r
For each vertex u ∈ V, u 6= r: Insert(PQ, u,∞)
Insert(PQ, r, 0), visit(r) = NULL
/* main loop */
WHILE PQ not empty

u = Delete-min(PQ)

For each (u, v) ∈ E:

IF v ∈ PQ and w(u, v) < key(v):

visit[v] = u

Decrease-Key(PQ, v, w(u, v))

Output edges (u, visit(u)) as part of MST.

Kruskal’s MST algorithm

KRUSKAL
/* initialize */
For each vertex v ∈ V : Make-Set(v)
Sort edges of E in increasing order by weight
/* main loop */
FOR each edge e = (u, v) ∈ E in order of weight:

IF Find-Set(u) 6= Find-Set(v) THEN

output edge e as part of MST

Union-Set(u, v)

1


