
Divide-and-conquer
Module 4: Techniques

1 Overview

We have seen several problems so far whose solutions look very similar. This week we introduce a
general technique called divide-and-conquer. It is a powerful tecnique which yields elegant solutions
to many problems. We’ll explore this technique by seeing it in action on a couple of problems.

2 Divide-and-conquer

Let’s assume, generically, that we want to solve a problem P. A divide-and-conquer (D&C) solution
for P would look as follows:

Input: Problem P

Algorithm divideAndConquer(P):

1. Base case: if size of P is small, solve it (e.g. brute force) and return solution

//else:

2. Divide: divide P into smaller problems P1, P2

3. Conquer: solve the smaller subproblems recursively, by calling divideAndConquer(P1)
and divideAndConquer(P1)

4. Combine: combine solutions to P1, P2 into solution for P.

3 Example 1: Mergesort

• We’ve already seen a divide-and-conquer algorithm: It’s Mergesort!

1

Mergesort an array of n elements:

– Base-case: if size of input is 1, return

– Else:

∗ Divide: Divide the array into two arrays of n/2 elements each

∗ Conquer: Sort the two arrays recursively

∗ Combine: Merge the two sorted arrays of n/2 elements into one sorted array of size n

• Analysis: T (n) = 2T (n/2) + Θ(n), which solves to T (n) = Θ(n lg n)

4 Example 2: Multiplying large integers

• The problem: We want to write an algorithm to multiply arbitrarily large numbers.

• Example: A = 13519384653184763746 and B = 32875641827561875665

• A and B cannot be represented as integers, because an integer (in any programming language)
has a fixed precision. Basically in any programming language, an integer is represented on 4
bytes, which is 32 bits. Assuming the integer is unsigned, if all these bits are used for the value,
the largest bvalue representable on 32 bits is 11111111...11 which is 1+2+22+23+ ...+231 =
232 − 1 which is approx. 4 billion. So the largest integer in the computer is 4 · 109. If you
want larger values you need to use special libraries for large numbers—which do what we’ll
do in this problem, represent values as arbitrarily long arrays of digits.

• So: we assume we are given two numbers, A and B, each one represented on n digits. We’ll
assume the digits are given as arrays:

A = [A0, A1, A2...., An−1], B = [B0, B1, B2..., Bn−1]

• We want to write an algorithm to compute the product of A and B: C = A×B

• How do you compute C? Let’s see an example.

• Example: A = 357, B = 125. We could do what we learnt in school, multiply each digit in
A by each digit in B, and then add the results. Let’s assume that the multiplication of two
one-digit numbers takes Θ(1) time. When A and B have n digits each, this procedure we
learnt in school would take O(n2) time. Right? Right.

• With our “algorithms hat” on, we ask the usual question: Can we do better than quadratic?

4.1 Towards a divide-and-conquer approach

• Let’s try a divide-and-conquer approach. The problem for us is multiplying n-digit numbers.
A half-problem woud be multiplying numbers represented on n/2-digits. We would need
to frame the multiplication of two n-digit numbers in terms of multiplying two n/2-digit
numbers. Let’s see.

2

• Example: A = 1427 and B = 3659, with n = 4 digits. Let’s split A and B into two halves:
A = 1400 + 27 = 14 · 102 + 27, and B = 3600 + 59 = 36 · 102 + 59. Right?

• So we can say that A × B = (14 · 102 + 27) × (36 · 102 + 59) = 14 × 36 · 104 + (27 × 36 +
59 × 14) · 102 + 59 × 27. We expressed the product of two 4-digit numbers in terms of four
products of 2-digit numbers, and 3 additions of 4-digit numbers. We’re getting there!

• Let’s generalize: Let’s denote by A′ the first half of A and by A” the second half of A, that
is: A = [A′A”], where A′ = [A0, A1, ...An/2] and A” = [An/2+1, ..., An−1]. We get that

A = A′ · 2n/2 + A”

• Remember we’re working in base-2, everything is the same as in base 10, except with 2 instead
of 10. For e.g. 10012 = (10 · 22 + 01)2 = (2× 22 + 1)10 = (23 + 1)10 = 910

• Similarly, Let’s denote by B′ the first half of B and by B” the second half of B, that is:
B = [B′B”], where B′ = [B0, B1, ...Bn/2] and B” = [Bn/2+1, ..., Bn−1]. We get that

B = B′ · 2n/2 + B”

• Now we can write
A×B = (A′ · 2n/2 + A”)× (B′ · 2n/2 + B”)

• Opening the parenthesis we get:

A×B = A′ ×B′ × 2n + (A′ ×B” + A”×B′)× 2n/2 + A”×B”

• What does this mean? To compute A × B, the product of two n-digit numbers, we need to
compute:

1. We need to compute 4 products of two n/2-digit numbers: A′ × B′, A′ × B”, A” × B′

and A′ ×B”.

2. We need to compute three sums of Θ(n)-digit numbers (there are three “+” signs in the
expression above). Adding two n-digit numbers can be done in Θ(n)-time, by using the
obvious algorithm (add two digits one at a tiime, going from right to left).

3. Multiplying by a power of 2 (in base-2) means shifting to the left that many bits, and
adding trailing 0s. That can be done in linear time in terms of the number of bits in
our number and the exponent. So multiplying A′ × B′ by 2n runs in the total number
of bits in A′ ×B′ plus n, which is Θ(n).

4. Similarly, multiplying (A′ ×B” + A”×B”) by 2n/2 runs in Θ(n) time.

• So overall we expressed A × B as four products of n/2-digit numbers; once these products
are known, it takes Θ(n) work to figure out A×B.

• Let T (n) be the running time for computing the product of two n-digit numbers. Then we
can write that T (n) = 4T (n/2) + Θ(n)

3

• The recurrence solves to Θ(n2) time.

• Exercise: Solve the recurrence

• Really?

• Really. We get the same quadratic time as with the “straightforward” algorithm! Worse
actually, because of recursion overhead.

4.2 Karatsuba’s idea

• Still, the idea can be used to get a better algorithm.

• How? If we could express A × B in terms of only three products of n/2-digit numbers, We
would get the recurrence T (n) = 3T (n/2) + Θ(n), which solves to Θ(nlg3) = n1.584 << n2

• But... How ??!

• Remember that

A×B = A′ ×B′ · 2n + (A′ ×B” + A”×B′) · 2n/2 + A”×B”

We need A′ ×B′, A′ ×B” + A”×B′ and A”×B”

• Karatsuba observed that we can compute A′×B”+A”×B′ in terms of the other two products
but with some additional additions/subtractions:

A′ ×B” + A”×B′ = (A′ + A”)× (B′ + B”)−A′ ×B′ −A”×B”

• Therefore we would need only three products:

A′ ×A”, B′ ×B” and (A′ + A”)× (B′ + B”)

• The algorithm:

IntegerMultiply (A, B):

– Divide A and B into halves: A′, A”, B′, B”

– Compute three n/2-digit products recursively, namely let Z1 = A′×B′, Z2 = A”×B”
and Z3 = (A′ + A”)× (B′ + B”)

– Combine results by doing a bunch of additions and subtractions and shifts, namely
Z3 = Z3 − Z1 − Z2

Z = Z1 × 2n + Z3 × 2n/2 + Z2

– Return Z as the result

• We get the recurrence T (n) = 3T (n/2) + Θ(n), which solves to Θ(nlg3) = n1.584

• Self-study exercise: Consider two numbers on 4 digits each, and compute their product using
Karatsuba’s algorithm; use base-10 for simplicity.

4

5 Example 3: Matrix Multiplication

Let X and Y be two n× n matrices:

X =



x11 x12 · · · x1n
x21 x22 · · · x1n
x31 x32 · · · x1n
· · · · · · · · · · · ·
xn1 xn2 · · · xnn



Y =



y11 y12 · · · y1n
y21 y22 · · · y1n
y31 y32 · · · y1n
· · · · · · · · · · · ·
yn1 yn2 · · · ynn


We want to compute the product Z = X · Y , which is defined as zij =

∑n
k=1Xik · Ykj

• The straightfoward algorithm: For every i=1 to n, for every j=1 to n, compute zij as the
sum

∑n
k=1Xik · Ykj

• Analysis: There are n2 elements, and each one needs a loop to calculate ⇒ n2 · n = Θ(n3)

• Can we do better? That is, is it possible to multiply two matrices faster than Θ(n3)?

• This was an open problem for a long time... until Strassen came up with an algorithm in
1969. His idea was to use divide-and-conquer.

5.1 Towards matrix multiplication via divide-and-conquer

• Let’s imagine that n is a power of two. We can view each matrix as consisting of four
n/2-by-n/2 matrices.

X =

{
A B
C D

}
, Y =

{
E F
G H

}
• Their product X · Y can be written as:{

A B
C D

}
·
{

E F
G H

}
=

{
(A · E + B ·G) (A · F + B ·H)
(C · E + D ·G) (C · F + D ·H)

}
• This leads to a divide-and-conquer solution:

MatrixMultiply (X, Y):

– Divide X and Y into eight sub-matrices A,B,C,D,E, F,G,H.

– Compute eight n/2-by-n/2 matrix multiplications recursively, namely A ·E,B ·G,A ·
F,B ·H,C · E,D ·G,C · F,D ·H

– Combine results (by doing 4 matrix additions) and copy the results into a matrix Z

– Return matrix Z as the result

5

ANALYSIS:

• Adding two n-by-n matrices runs in Θ(n2) time.

• The running time is given by T (n) = 8T (n/2) + Θ(n2), which solves to T (n) = Θ(n3)

• Cool idea, but not so cool result......since we already discussed that the straightforward
algorithm runs in O(n3)

• Can we do better?

5.2 Strassen’s matrix multiplication algorithm

• Strassen’s algorithm is based on the following observation:

The recurrence
T (n) = 8T (n/2) + Θ(n2)⇒ T (n) = Θ(n3)

while the recurrence

T (n) = 7T (n/2) + Θ(n2)⇒ T (n) = Θ(nlg 7)

• Strassen found a very clever way to express X · Y in terms of only seven products of n/2-
by-n/2 matrices

• With same notation as before, we define the following seven n/2-by-n/2 matrices:

S1 = (B −D) · (G + H)

S2 = (A + D) · (E + H)

S3 = (A− C) · (E + F)

S4 = (A + B) ·H
S5 = A · (F −H)

S6 = D · (G− E)

S7 = (C + D) · E

• Strassen observed that we can write the product Z as:

Z =

{
A B
C D

}
·
{

E F
G H

}
=

{
(S1 + S2 − S4 + S6) (S4 + S5)

(S6 + S7) (S2 + S3 + S5 − S7)

}

• For e.g. let’s test that S6 + S7 is really C · E + D ·G

S6 + S7 = D · (G− E) + (C + D) · E
= D ·G−D · E + C · E + D · E
= D ·G + C · E

6

• This leads to a divide-and-conquer algorithm:

StrassenMM(X, Y):

– Divide X and Y into 8 sub-matrices A, B, C, D,E, F,G,H.

– Compute S1, S2, S3, ..., S7. This step involves 10 matrix additions and 7
multiplications (which are computed recursively).

– Compute S1 + S2 − S4 + S6, S4 + S5, S6 + S7 and S2 + S3 + S5 − S7 and copy them
in Z. This step involves 8 additions/subtractions of n/2-by-n/2 matrices.

ANALYSIS:

• All additions/subtractions/copying can be done in Θ(n2) time

• Overall there are (only) 7 recursive calls

• The running time is given by T (n) = 7T (n/2) + Θ(n2), which solves to O(nlg 7).

• Lets solve the recurrence using the iteration method

T (n) = 7T (n/2) + n2

= n2 + 7(7T (
n

22
) + (

n

2
)2)

= n2 + (
7

22
)n2 + 72T (

n

22
)

= n2 + (
7

22
)n2 + 72(7T (

n

23
) + (

n

22
)2)

= n2 + (
7

22
)n2 + (

7

22
)2 · n2 + 73T (

n

23
)

= n2 + (
7

22
)n2 + (

7

22
)2n2 + (

7

22
)3n2.... + (

7

22
)lgn−1n2 + 7lgn

=
lgn−1∑
i=0

(
7

22
)in2 + 7lgn

= n2 ·Θ((
7

22
)lgn−1) + 7lgn

= n2 ·Θ(
7lgn

(22)lgn
) + 7lgn

= n2 ·Θ(
7lgn

n2
) + 7lgn

= Θ(7lgn)

= nlg 7

So the solution is T (n) = Θ(nlg 7) = Θ(n2.81...)

7

Some comments

• Strassen’s algorithm “hides” a much bigger constant in Θ() than the straightfoward cubic
algorithm.

• Currently the best known bound for matrix multiplication is O(n2.376..) by Coppersmith and
Winograd, 1978.

• The lower bound is (trivially) Ω(n2).

• Improving matrix multiplication is still a big open problem!

• In practice: Strassen’s algorithm is efficient in practice once n is large enough. For
small values of n the straightforward cubic algorithm is used instead. The crossover point
where Strassen starts beating the cubic algorithm depends on the platform and needs to be
determined empirically.

• Large integer multiplication: a couple of algorithms have been developped which improve
on Karatsuba; there is an algorithm by Schonhage and Strassen (1971) that runs in O(n lg n lg lg n);
in 2007 a new algorithm was published which has a theoretically better upper bound of
O(n lg n · 2O(log∗ n)); several improvements to this algorithm were published in the last 10
years, culminating with an O(n lg n) algorithm proposed in 2019 by Harvey and Van Der
Hoeven; because Strassen conjectured that Ω(n lg n) is a lower bound, this last algorithm is
believed to be optimal.

These algorithms are faster than Karatsuba for very very large values of n. For small values
of n Karatsuba is fastest.

8

